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Abstract

Experimental investigations on superelastic shape-memory alloy wires show a significant dependency of the load-
displacement response on the loading—unloading rate, coupled with a non-negligible oscillation of the wire temperature.

Motivated by this observation, the present work proposes a thermo-mechanical model, suitable to study the response
of a superelastic shape-memory alloy wire under cyclic stretching-bending loadings.

The model is based on the kinematical assumptions that sections which are plane in the undeformed configuration
remain plane also in the deformed configuration and that the wire shear deformation is negligible. As a consequence, we
need to introduce only a one-dimensional constitutive stress—strain equation; this relation involves a scalar internal
variable, representing the martensite fraction, variable for which evolutionary equations are proposed.

The whole model is then thermo-mechanically coupled due to the presence of internal heat sources in the form of
phase-transition latent heat and of mechanical dissipation.

The paper also addresses a numerical scheme for the integration, in time, of the model and the algorithmic solution
of the corresponding time-discrete thermo-mechanical problem. Finally, results from numerical simulations are pre-
sented to show the response of a wire under cyclic stretching and bending loading conditions imposed at different strain-
rates. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A large class of materials, known as shape-memory alloys (SMAs), presents the superelastic effect, that is,
the ability of undergoing large deformations in loading—unloading cycles without showing residual de-
formations at the end of the cycles (Buehler and Wiley, 1965; Wayman and Duerig, 1990; Wayman, 1992,
1993). As an example, Fig. | reports a typical superelastic response in tension and compression extracted
from Lim and McDowell (1999).
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Fig. 1. An example of typical superelastic response in tension and compression: stress—strain response. The experimental data are taken
from the work of Lim and McDowell (1999).

This unique macroscopic behavior has attracted an increasing scientific and commercial interest since it
can be exploited in innovative applications (Duerig et al., 1990, Pelton et al., 1995, 1997), ranging from
orthodontic wires for the correction of tooth malpositions (orthodontic appliances) to micro-structures
used in the treatment of blood-vessel occlusions (stents).

As usual, the macroscopic response finds its justification looking at the underlying micro-level. In fact,
shape-memory materials are able to undergo reversible martensitic transformations (Funakubo, 1987), that
is, solid-solid, diffusionless transformations between a crystallographically more-ordered parent phase
(austenite) and a crystallographically less-ordered product phase (martensite).

However, as addressed in several references (Chrysochoos et al., 1995, 1996; Lim and McDowell, 1999;
Shaw and Kyriakides, 1995, 1997; Tobushi et al., 1998), experimental investigations on the macroscopic
superelastic behaviour reveal that

o the response is often associated to significative temperature variations. Relying again on Lim and McDo-
well (1999), Fig. 2 shows the temperature-strain relation corresponding to the stress-strain curve of
Fig. 1,

¢ the austenite-martensite phase transformations occur in well-defined stress—temperature ranges and they
can be induced through mechanical loading—unloading patterns through thermal cooling-heating pat-
terns or through combined mechanical-thermal patterns (Funakubo, 1987; Melton, 1990).

Recalling also that the typical superelastic stress—strain response is characterized by an hysteresis (Fig. 1),
we may then conclude that SMAs show a strong thermo-mechanical constitutive coupling. This coupling is
such that it possibly changes the material mechanical response during cyclic tests as a consequence of a
progressive heating. This aspect can be of non-negligible importance in many applications; an example
could be the use of superelastic materials as dissipative devices in the dynamics of structural elements, such
as in the case of civil structures subject to earthquakes or in the case of light space structures under de-
ployment conditions.
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Fig. 2. An example of typical superelastic response in tension and compression: temperature—strain response. The experimental data
are taken from the work of Lim and McDowell (1999).

Motivated by the described experimental observations in combination with modelling and applicative
possible interests, several authors have studied the coupled thermo-mechanical problem of a superelastic
shape-memory alloy wire. In the following, we briefly comment on some of the approaches available in the
literature.

Leo et al. (1993) consider a temperature-dependent nonlinear thermoelastic model, including a heat
generation mechanism at the austenite-martensite interface. Classifiable as a micro-level approach (due to
the interface description), the work assumes a constant temperature for the wire cross-section, it considers
that either one or two interfaces may occur in the wire and it limits the discussion only to the case of a
monotonic loading.

Similarly, Bekker and Brinson (1997) deal again with a single austenite-martensite interface, while the
model construction is based on a combination of phase diagram kinetics, macro-scale constitutive laws and
energy balance considerations.

A different approach is pursued by Boyd and Lagoudas (1996a,b), who combine a micro- and macro-
scale approach. In particular, the micro-scale description is very accurate, leading at the end to a complete
but at the same time quite complex three-dimensional thermo-mechanical model.

Following a similar but simplified line of thinking, Shu et al. (1997) couple a one-dimensional SMA
constitutive model with the thermal equations, considering the heat produced by electrical conduction in
the wire. Again, the wire temperature is set to be constant within the cross-section, and hence, the whole
thermo-mechanical problem is one-dimensional.

A similar 1D approach is proposed by Chrysochoos et al. (1995, 1996), where detailed experimental
thermo-mechanical considerations are also addressed.

With respect to the cited literature, in the following, we approach the thermo-mechanical response of a
superelastic SMA wire from a different perspective. In fact, our goal is the development of a computational
framework for the simulation of SMA devices, made of beam elements with generic cross-sections and
undergoing complex cyclic loadings. To do so, we start introducing the kinematical assumptions that plane
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sections in the underformed configuration remain plane also in the deformed configuration and that the
wire shear deformation is negligible.

Hence, choosing a macro-level description for the SMA response, we adopt a phenomenological one-
dimensional stress—strain equation to describe the local mechanical behaviour. The model is cast within
the general and flexible internal variable framework discussed by Lubliner and Auricchio (1996), and it
properly describes the material different response in tension and compression. Moreover, it involves a scalar
internal variable, representing the martensite fraction, variable for which evolutionary equations are
proposed.

We also wish to emphasize that in the modeling, we are not describing any material interface, either
because we assume to work with a representative average volume large enough to not require such a de-
tailed micro-level description or because we assume to deal only with alloys for which the experimentally
observed deformation is homogeneous from a macroscopic point of view.

The constitutive model is thermo-mechanically coupled due to the presence of internal heat sources in
the form of phase-transition latent heat and mechanical dissipation. In particular, the transient coupled
thermo-mechanical problem is approached considering the thermal evolution within the cross-section,
hence as a two-dimensional problem.

We address a numerical scheme for the model time-integration and for the algorithmic solution of the
corresponding time-discrete thermo-mechanical problem within a finite element method. The proposed
framework makes it possible to study wires with a generic cross-section and subject to any cyclic stretching—
bending loading condition.

Finally, results from numerical simulations are presented to show the response of a wire with circular
cross section under cyclic stretching and cyclic bending loading conditions imposed at different strain rates.

2. Time-continuous model

We now address a one-dimensional thermo-mechanical time-continuous superelastic model, developed
within the theory of irreversible thermodynamics (Lemaitre and Chaboche, 1990; Lubliner, 1990).

2.1. General framework

We assume that at each instant, the thermodynamic state of a homogenized volume element is char-
acterized by an appropriate set of external (controllable) and internal variables. In particular, we choose as
external variables the uniaxial strain, ¢, and the absolute temperature, 7, and as internal variable a scalar
quantity, &, representing the martensite volume fraction.

A fundamental ingredient is then the free energy, i, function of the external and the internal variables.
Based on the free energy, it is possible to derive consistent expressions for the dependent variables, such as
the stress, ¢ and the entropy, #, defined as

oy oy
To  "TTor M

2.2. Strain decomposition

Limiting the discussion to a small deformation regime, we introduce the following additive decompo-
sition:

g =t 4", (2)
where



F. Auricchio, E. Sacco | International Journal of Solids and Structures 38 (2001) 6123-6145 6127

o ¢! represents the thermo-elastic strain; by definition, it depends only on the control variables, i.e.,
¢! = ¢%(0, T), and it includes contributions like the pure elastic term as well as the thermo-elastic expan-
sion term.

e ¢ represents the inelastic strain, which may depend also on the set of internal variables, that is, in the
present case on the martensite fraction &.

Generalizing a common statement within shape-memory literature (Auricchio et al., 1997; Auricchio and
Taylor, 1997; Brinson, 1993; Brinson et al., 1996), we express the inelastic strain as

e = g, Egs (3)
where

e ¢ is a measure of the maximum deformation obtainable aligning the martensite in one direction, often
indicated as maximum residual strain (Funakubo, 1987) and in the following considered as a material
parameter.

e s is the stress sign, that is,

s=1 if ¢ >0,
s=—-1 ifa<O.

)

Hence, dealing only with uniaxial states of stress and assuming to distinguish between tensile and com-
pressive material parameters with a+ or a— superscripts, Eq. (3) specializes to
gt = gé&s if o>0,

in,—

e = —g & if 0 <O0.

()

with ¢/ and ¢, both positive quantities.

At this point, we wish to highlight that for a one-dimensional case, it is important to distinguish between
tensile and compressive material properties since experimental investigations have clearly evidenced a
significative asymmetry between tension and compression (Gall et al., 1999; Huang, 1999; Liu et al., 1998;
Manach and Favier, 1991; Orgéas and Favier, 1991).

However, in the forthcoming discussion, for brevity, we omit the superscripts + and — from the material
constants when no confusion can be induced.

2.3. Free energy

After a critical review of the several proposals available in the literature (see also developments and
comments in Appendix A) and adopting the subscripts A and S to indicate material parameters relative to
the austenite and to the martensite, respectively, we assume the following free energy:

T
V= [(ua — Tnp) — Es(Au — TAD) ]+ C (T — Ty) — TlogT0 +1E(e — stss)z

— (T — Ty) (e — e,&5 5)En, (6)

where

e u, and 7, are the internal energy and the entropy of the austenite.
e Au and Ay are the internal energy difference and the entropy difference between the austenite and the
martensite. In particular, we set

Au=up —us =0,

Anp =1, —n5=0
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with ug and #g, the internal energy and the entropy of the martensite.
C is the material heat capacity.

Ty is the natural or reference state temperature.

E is the elastic modulus.

o is the thermal expansion factor.

According to Eq. (1), the stress ¢ and the entropy # are

0 0 -T
’= ail alﬁ =E(e —els s) — Eo(T — Tp), 7
0 1 +(e— E
aw[‘ = na — EsAn + Clog T (e —erls s)Ea. )

2.4. Heat equation

Following classical textbooks (Lemaitre and Chaboche, 1990), the heat equation can be written as
CT +divg = b, (9)

where div indicates the divergence operator, a superposed dot indicates a time-derivative and ¢ is the heat
flux. In particular, under the validity of the Fourier law, we have ¢ = —K grad 7 with K, the thermal
conductivity. Finally, b is the heat source, which can be written as

b:%tmc+@mecy (10)
where

e ' represents the heat production associated to the thermo-mechanical coupling (including thermo-
elastic effects, the phase transformation latent heat, etc.) and it is defined as

o’y Py
Hme =T ——— e+ T —— &. 11
‘ oros - T 308, 5 (1)
® Y, briefly indicated as mechanical dissipation, represents the heat production associated to the dissi-
pative mechanical processes and it is defined as

‘ — g6 — % %
Dinec = O (688+6és ) (12)

We recall that the mechanical dissipation is in general required to be non-negative, i.e., P = 0.

Due to the specific form of free energy chosen, we have

Hoime = T{ — Eoé + (e Eo + An)és], (13)

@mec = Hlés (14)
with

II) = ¢rlo| — TAny + Au (15)

representing the thermodynamic force associated to &g.
Finally, we note that the mechanical strain rate ¢ in Eq. (13) is a known quantity. In fact, as addressed in
Section 1, at each instant ¢z, we assume to know the history of the cross-section kinematical parameters,
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which are the central axis elongation and the curvature, indicated as gy = &/(¢) and y = x(¢), respectively.
The strain, ¢ and the strain rate, é in the generic fiber of the cross-section are then computed as

6=t VL (16)
&= & +y17

where y is the fiber offset.
2.5. Internal variable evolution
We assume to work with two processes which may produce variations of the martensite fraction:

o the conversion of austenite into martensite (A — S),
o the conversion of martensite into austenite (S — A).

For each process, the martensite evolution is expressed in terms of the associated driving force I1, derived in
Eq. (15). It is interesting to observe that without losing any information, the driving force can be expressed as

F =|o| —TA, (17)
where
a =B (18)
&L

Eq. (17) is consistent with experimental evidences (Funakubo, 1987; Melton, 1990), showing that both
processes are driven by either stress and/or temperature and that they may occur in stress-temperature
regions delimited with good approximations by straight lines.

Following Likhachev and Koval (1992) as well as other references (Auricchio et al., 1997; Auricchio and
Taylor, 1997; Auricchio and Sacco, 1999), we choose linear kinetic rules:

: F
552—%AS(1—5s)m7 (19)
. F

— SAE ) 20
éS CSF—R§A ( )

The terms #*5 and #>* are activation factors relative to the two evolutionary processes, defined as
Ui {R;*S <F <Rp

HAS = F>0 , (21)
0 otherwise
| i { RN <F <R

AN = F<0 ’ (22)
0 otherwise

where
RN =™ —Tpd, RN =aS — Tid, (23)
RA =63% —Trd, R =0 — TrA.

The quantities 65, oS, ¢34, g?* are material parameters indicating respectively the initial and final stress

values for the A — S and the S — A transformations at temperature 7;. All these parameters can be
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determined experimentally performing a uniaxial test inducing complete phase transformations at a tem-
perature Tk, which is set only on the base of experimental convenience.
To guarantee the non-negativeness of the mechanical dissipation %y, the material parameters ¢, g5,
SA_ 63 should verify the following inequalities:

s

g

or <M < apS,

s
SA

24
ot < St o, (24)

where oy is computed from the condition IT; = 0 for T = T, hence
_ TRAn — Au

o (25)

OR

3. Time-discrete model and algorithmic solution

The time-discrete model is obtained integrating the time-continuous model over the time interval [z,, ]
through a backward-Euler integration scheme as discussed in the following. '

3.1. Heat equation

Integration of Eq. (9) leads to

T-T, ..
Ct—t +divg—b; =0, (26)
where ¢ = —K grad 7, and
1
bd:t—t (s + TT] (27)
with
4s = &s — Esy
I, = g lo| — TAy + Au (28)

I'y = —Ea(e —¢,) + (e.Ea + An) s

with ¢ and ¢, assumed to be known.
3.2. Internal variable evolution

The time-discrete phase-transition rules are obtained from Egs. (19) and (20), writing them in residual
form and clearing fractions:

WS = Js(F = RYS) + 251 = &)(F ~ ) = 0 29)

AN = Js(F — RN) — AN E(F —F,) =0 (30)

The quantity Ag can be computed requiring the satisfaction of the active evolutionary equation.
To improve the numerical robustness of the solution procedure, we introduce two modifications to the
model, as described in the following:

' To minimize the appearance of subscripts, the subscript n indicates a quantity that is evaluated at time 7,, while no subscript
indicates a quantity that is evaluated at time ¢, with ¢, < ¢.
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1. We scale the phase transition driving force with respect to a temperature upper limit value, indicated as
Ty. Accordingly, the driving force is now expressed as

F = o] — (T — Ty)4, (31)

where the temperature 7y is an arbitrary temperature value such that 7 < 7y. With position 31, we
guarantee the constant sign of F.

2. We convert the activation factors to a strain control approach, following the consideration of Auricchio
and Sacco (1999). In particular, the time-discrete activation factors are defined as

i IS <G <8,
A = G-G,>0, (32)
0 otherwise,
1 if St < G < S,
A = G-G, <0, (33)
0 otherwise
with

s oM
Sx - % + SLéSm
< oS
S = % + &, (34)
SA
SSSA =% +erls
goa Z o
E

3.3. Tangent modulus

We are now left only with the construction of the tangent modulus consistent with the time-discrete
model. The use of a consistent tangent modulus preserves the quadratic convergence of the Newton method
adopted for the solution of the heat equation.

Due to the specific problem under investigation (a wire under mechanical loading-unloadings), the strain
¢ is known at each instant and in each point of the cross-section. Hence, the thermal evolution within the
cross-section is solved through a finite element method. Accordingly, we need to linearize the heat equation
only with respect to the temperature. The only non-trivial term comes from the linearization of b, (Eq.

27)):

1
db, = (t — ) [dITy2s + ITydJs +dI T + I,dT). (35)

Recalling Eq. (15), we have
dIl, = grsdo — AndT, (36)

where
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do = —E¢; dig — EadT. (37)

So far, the only unknown left is dAs, which can be computed by linearizing the active discrete-time evo-
lutionary equation, generally written as %(4s, T) = 0. Accordingly,

OR OR
X — R =
dz s dés + T dT =0 (38)
from which we obtain that
o\ oz

4. Considerations on the model parameters

The described constitutive model is based on a specific set of material parameters. In particular, we have
K, C, Ty, o, which are the thermal conductivity, the heat capacity, the initial (or natural) temperature and
the thermal expansion factor, respectively. We also need to specify the elastic modulus as well as the in-
ternal energy and the entropy differences between the two phases, indicated respectively as E, Au, Ay.

Moreover, chosen a convenient temperature 7z, we need to evaluate the stress values at which the two
phase transitions (A — S and S — A) start and finish for T = T under tension and compression as well as
the corresponding residual strains. Indicated respectively as

AS,+ AS.+ SA,+ SA+ +
0,7 Op 057, Op &,
AS,— AS,— SA,— SA,— -
Oy, Op  Og7, Op » &,

these values can be experimentally determined performing a static (very slow) uniaxial tension—compression
loading—unloading test.

However, in the forthcoming numerical examples, consistently with the thermodynamic approach
adopted for the model development, we prefer to relate the material parameters relative to compression
directly to the material parameters relative to tension. This is done assigning values to the parameters in
tension and then assuming a value for the ratio, o, defined as 6 = A" /47; then, the compressive parameters

can be computed as follows:
A= =A4%/9, g = An/A,
BT = §ahSH ST = oS, (40)

SA.— SA,— SA,
SA, :50.SSA,+7 o} :50-1‘ +.

s

g

5. Numerical examples

Using the time-discrete model addressed in Section 4, we now investigate the thermo-mechanical re-
sponse of a superelastic wire under cyclic mechanical loadings. In particular, we focus on a circular cross-
section wire with diameter D = 2 mm and, as discussed in Section 2.4, we assume to control the wire strain
history through its elongation and curvature.

Due to symmetry considerations, only half cross-section is discretized using the mesh presented in Fig.
11.

To study the thermo-mechanical problem, we introduce 1D elements along the interface between the
SMA wire and the external environment. These elements take into account the heat exchange between the
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wire and the surrounding imposing that the flux is proportional through a material constant, V, to the
difference of temperature between the wire and the surrounding.

Material parameters: The material parameters are

K=8 Ns'K! C=4Nmm?K,

Ty =293 K, T =573 K,

E =50000 MPa, « =0 K,

Au = 30 MPa, Ay =0.20 MPaK ',

a5+ =400 MPa, ¢p%" = 500 MPa,

aSA+ =300 MPa, o;™" = 200 MPa,

g =7%, 6 =0.75,

V=0.1,
where 7) indicates also the temperature of the surroundings. According to the value assigned to J, we have:

oS~ =533 MPa, 65" = 666 MPa,

o~ =400 MPa, of* =266 MPa,

g = 5.25%.
Loading histories: To investigate the thermo-mechanical response of the wire under different complex and
cyclic loading conditions, we decide to assign the loading histories in terms of a non-dimensional time #,giy,,
always contained in the range [0, 1]; this choice helps in comparing results from different problems. The real
time, ¢, is obtainable as follows:

= (tadim X tmax)tfact (41)

that is, multiplying the non-dimensional time scale by the maximum non-dimensional time value #,,x and
then by a scaling factor, 7. In the following, for each single set of problems, #,. is fixed, while #g is
varied; this corresponds to keep the same type of loading history and to change only the strain-rate at which
it is applied.

Output quantities: Due to the loading situations under considerations, as mechanical outputs we consider
the cross-section resulting force, F' and resulting moment, M, defined respectively as:

Fe / ods, (42)

S
M= [ (yo)dS, (43)

where S is the cross-section area. Moreover, due to the bi-dimensional nature of the problem and com-
plexity of the solution, associated also with its evolutionary nature, as outputs, we also consider averaged
values for the temperature and for the martensite fraction:

1
Taver:_/Tdsv (44)
S Js

1
ﬁs,aver = § ~/S éSdS (45)

We also compute a measure of the spatial variance within the cross-section for both the wire temperature
and the martensite fraction, defined respectively as the difference at each instant between the maximum and
the minimum temperature and as difference at each instant between the maximum and the minimum
martensite fraction in the wire cross-section:

Toar = Thax — Tmim (46)
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":S«,var = éSAmax - és,min- (47)

Finally, we remark that all the material constants and computations relative to temperature are in term of
Kelvin degrees; however, all the plots are in terms of Celsius degrees scaled with respect to the surrounding
temperature (7).

5.1. Single-cycle uniaxial tension—compression test

We start the numerical investigations simulating a uniaxial tension—compression test. The loading his-
tory is presented in Table 1 (Load 1) in terms of the uniaxial elongation ¢, versus the non-dimensional time
tadim, While the imposed curvature is kept identically equal to zero.

For the particular problem under investigation, we consider a #,,, value equal to 24 s and scaling factors
trace €qual to 102, 1, 1072 to which we will refer as the slow (S), medium (M) and fast (F) loading-rate case.

Fig. 3 reports the resulting force, F versus the applied elongation, &, for the three cases. Similarly, Fig. 4
reports the average temperature 7,,., With respect to the reference temperature, 7;.

It is interesting to observe that

o for the slow loading-rate case, the wire average temperature, Ty, is constant and equal to the external
temperature, 7y. Accordingly, the force—elongation response corresponds to the static case (no thermal
transient),

o for the medium loading-rate case, the wire average temperature, Ty, Oscillates around the external tem-
perature Ty. Accordingly, the force—elongation response is partially above and partially below the static
response. As a consequence, we may also note an increment of the hysteresis loop size,

Table 1
Loading histories in terms of non-dimensional time

Load 1

tadim (5) 0 0.25 0.75 1

g () 0 0.0600 —0.0600 0

Load 2

tadim (-) 0 0.0286 0.0476 0.0667 0.0857 0.1048 0.1238

& (-) 0 0.0600 0.0200 0.0600 0.0200 0.0600 0.0200
0.1429 0.1619 0.1810 0.2000 0.2190 0.2381 0.2714
0.0600 0.0200 0.0600 0.0200 0.0600 0.0200 0.0900
0.3095 0.3476 0.3857 0.4238 0.4619 0.5000 0.5381
0.0100 0.0900 0.0100 0.0900 0.0100 0.0900 0.0100
0.5762 0.6143 0.6524 0.6905 0.7286 0.7667 0.8524
0.0900 0.0100 0.0900 0.0100 0.0900 0.0100 0.0900
0.9476 1.0000
0 0

Load 3

tadim (5) 0 0.0833 0.1333 0.1833 0.2333 0.2833 0.3333

% (mm™') 0 0.0500 0.0200 0.0500 0.0200 0.0500 0.0200
0.3833 0.4333 0.4833 0.5333 0.5667 0.6000 0.6333
0.0500 0.0200 0.0500 0.0200 0.0400 0.0200 0.0400
0.6667 0.7000 0.7333 0.7667 0.8000 0.8333 0.9000
0.0200 0.0400 0.0200 0.0400 0.0200 0.0400 0
1.0000
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Fig. 3. Single-cycle uniaxial tension—compression test. Force, F versus elongation, &, for different loading rates (S: slow; M: medium; F: fast).
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Fig. 4. Single-cycle uniaxial tension—compression test. Average temperature minus reference temperature, 7, — 7 versus elongation,
gy for different loading rates (S: slow; M: medium; F: fast).

o for the fast loading-rate case, the wire average temperature, T,., oscillates above the external tempera-
ture Tp. Accordingly, the force—elongation response is always above the static response. As a conse-
quence, we may also note a decrement of the hysteresis loop size.
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For the present problem, the variances relative to the wire temperature and to the martensite fraction as
defined in Egs. (46) and (47) are computed but not reported since they show variations less than 1%.

5.2. Multiple-cycle uniaxial tension test

We now simulate a cyclic uniaxial tension test. The loading history is presented in Table 1 (Load 2) in
terms of the uniaxial elongation &, versus the non-dimensional time #,4;,,, While the imposed curvature is
kept identically equal to zero.
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Fig. 5. Multiple-cycle uniaxial tension test. Force, F versus elongation, ¢, for different loading rates.
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For the particular problem under investigation, we consider a #,,, value equal to 210 s and scaling
factors e equal to 10%,1,1072 to which we will refer as slow (S), medium (M) and fast (F) loading-rate
case.

Fig. 5 reports the resulting force, F, versus the applied elongation, ¢y, for the three cases. Similarly, Fig. 6
reports the average temperature, T,y.r, With respect to the reference temperature, 7.

It is interesting to observe that

o for the slow loading-rate case, the wire average temperature, T, is constant and equal to the external
temperature, 7y. Accordingly, the force-elongation response corresponds to the static case (no thermal
transient),

o for the medium loading-rate case, the wire average temperature, T, keeps oscillating around the exter-
nal temperature, 7y. Accordingly, the force—elongation response is partially above and partially below
the static response. As a consequence, we may also note an increment of the hysteresis loop size,

o for the fast loading-rate case, the wire average temperature, 7., oscillates above the external tempera-
ture 7j and it progressively keeps increasing. Accordingly, the force—elongation response is always above
the static response and it is possible to note a progressive decrement of the hysteresis loop size.

During each instant of the solution process, we also compute the variances T, and &g.,,. However, also

for this problem, the two variances are not reported since they show variations in the variables less than
1%.

5.3. Multiple-cycle bending test

We now simulate a cyclic bending test. The loading history is presented in Table 1 (Load 3) in terms of
curvature y versus non-dimensional time ¢,4;,, While the axial elongation is kept identically equal to zero.
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Fig. 6. Multiple-cycle uniaxial tension test. Average temperature minus reference temperature, T,y — Ty versus non-dimensional time,
t.aim for different loading rates (S: slow; M: medium; F: fast).
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Fig. 7. Multiple-cycle bending test. Moment, M versus curvature, y for different loading rates.

For the particular problem under investigation, we consider a #,,,x value equal to 60 s and scaling factors
traee €qual to 102, 1, 107* to which we will refer as slow (S), medium (M) and fast (F) loading-rate case.

Figs. 7-8 report the resulting moment, M and force, F, versus the applied curvature, y, for the three
cases. Similarly, Figs. 9 and 10 report the temperature average value, T,.;, and the temperature variance
&S aver» TESpectively.

It is interesting to observe that

o for all the loading-rate cases, a non-zero resulting force is necessary to kept the elongation equal to zero.
This can be easily explained recalling the different material response in tension and compression,
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Fig. 8. Multiple-cycle bending test. Force, F versus curvature, y for different loading rates.
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o for the slow loading-rate case, the wire average temperature, T, iS almost constant and equal to the
external temperature, 7. Accordingly, the moment—curvature response is very close to the static case

(no thermal transient),

o for the medium loading-rate case, the wire average temperature, 7., keeps oscillating around the external
temperature, Ty. Accordingly, the moment—curvature response is partially above and partially below the

static response. As a consequence, we may also note an increment of the hysteresis loop size,

o for the fast loading-rate case, the wire average temperature, 7T,.., Oscillates above the external tempera-
ture, Ty and it progressively keeps increasing. Accordingly, the moment—curvature response is always
above the static response, and it is possible to note a progressive decrement of the hysteresis loop size.
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Fig. 9. Multiple-cycle bending test. Average temperature minus reference temperature, Ty, — Ty versus adimensional time, t,4, for
different loading rates (S: slow; M: medium; F: fast).
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Fig. 10. Multiple-cycle bending test. Temperature variance, T, versus non-dimensional time, f,q;, for different loading rates (S: slow;
M: medium; F: fast).

During each instant of the solution process, we also compute the martensite fraction average value,
&5 aver» and the martensite variance value, &g ,,. However, also for this problem, they are not reported since
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Fig. 11. Multiple-cycle bending test. Distribution within the cross-section of the quantities: &g — &g,y (i.€., martensite fraction minus
martensite fraction average) and 7 — T, (that is, temperature minus temperature average).

they show variation almost non-appreciable variations. However, to give an idea of the variability of the
temperature and of the martensite fraction within the cross-section, Fig. 11 reports the quantities, T — T,y
and &g — &g e Within the cross-section.

6. Conclusions

Comparing the available experimental data (Chrysochoos et al., 1996; Lim and McDowell, 1999) with
the numerical results, we may conclude that, through the inclusion of the thermo-mechanical coupling in
the modelling, it is possible to reproduce most of the effects observed experimentally in SMA when tested at
different loading rates. In general, the numerical examples presented proved
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e the strong coupling between the mechanical and the thermal material response,
o the need to operate in specific loading-rate ranges if the size of the hysteresis loop has to be maximized.

These considerations highlight the importance of thermo-mechanical analyses for SMA and the need for
more accurate experimental investigations in order to better understand the nature of the macroscopic rate-
dependent phenomena occurring in this class of materials.
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Appendix A. A plausible free energy for a shape-memory alloy

Over the years, researchers have proposed many different free-energy expressions for materials under-
going martensitic phase transformations and in particular for shape-memory alloys. Examples — and clearly
by no means exhaustive of the literature richness on the subject — can be found in references (Abeyaratne
and Knowles, 1993; Boyd and Lagoudas, 1994, 1996a; Goo and Lexcellent, 1997, Huang and Brinson,
1998; Huo and Miiller, 1993; Leclercq and Lexcellent, 1996; Levitas, 1994; Lu and Weng, 1997, 1998;
Miiller and Xu, 1991; Patoor et al., 1988; Raniecki et al., 1992; Song et al., 1991;Sun and Hwang, 1993a,b).

However, due to the possible confusion generated by all the different approaches, the appendix is de-
voted to a simple derivation of the form adopted in the present paper. In particular, we start considering the
case of a single-phase material, then proposing a generalization to the case of a material undergoing solid—
solid phase transformations.

A.1. Single-phase material

For a single-phase material, the free energy can be considered to be a function of the thermo-elastic
strain, ¢ and of the temperature, 7. Following Raniecki and Bruhns (1991), a possible form is

W=, T) = Yo(T) + 9 () — (T = Ty (%, T) + C|(T = Ty) — TIOgTzO : (A1)
where

e 1, is the material free energy in the natural or reference state, that is, for 7 = T; and ¢! = 0. Recalling a
fundamental relation (Callen, 1985), we set y, = uy — Ty, With uy and #, the material internal energy
and entropy in the reference state.

e % is the free energy increase due to the elastic strain for 7 = Tj. Assuming a linear response in the elastic
range, we set

lpel _ %E(gd)z (AZ)

with E, the elastic modulus.
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o 5 is the entropy increase due to the elastic strain for T = Tp; in fact,

oy (el r
=——= “(& log—. A.
n=—g7 =N+ 1 (&) + Clog- (A3)
Assuming again a linear response, we set
nel(sel) _ SelEOC (A4)
with o the thermal expansion factor.
e (' is the material heat capacity; in fact,
on
T—=C. A5
or (A.5)
Rewriting the free energy and collecting term, the final form is
1 T
W =uy— T, +§E(gel)2 — (T = T)Ex+ C|(T —~ Ty) — Tlog - |. (A.6)
0

A.2. Material undergoing phase transformations

We now need to properly generalize the free energy proposed in Eq. (A.6) to the case of a material
undergoing a solid-solid phase transformation between austenite and martensite.

We start recalling that in the present context, the phase transformation is described through the scalar
internal variable, &g, representing the martensite fraction. Accordingly, the conditions & = 0 and &g =1
indicate that the material is composed only of austenite or martensite, respectively.

Hence, as first step, we generalize Eq. (A.6) such that a free energy similar to the one relative to a single-
phase material is returned for the limiting cases g = 0 and &g = 1. With this goal in mind, we concentrate
on the term Y, = uy — T'n,.

Adopting subscripts A and S to indicate material parameters relative to the austenite and to the mar-
tensite, we set

Yo = [ua — Tnal — Es[Au — TAn] + E(1 — &s) [thine — Ty (A7)
where
e u, and 7, are the internal energy and the entropy of the austenite.

e Au and Ap are the internal energy difference and the entropy difference between the austenite and the
martensite. In particular, we set

Au=up —us =0,

An=mnp—ns=0

with us and ng the internal energy and the entropy of the martensite.

o the term with factor &g(1 — &5) is a classical interaction contribution since it is zero for & = 0 or &g = 1
and it is non-zero only for intermediate values of £g. Hence, it models the variations in free energy due to
the presence of an austenite-martensite mixture.

Accordingly, we may conclude that a plausible free energy for a material undergoing a solid-solid phase
transformation may have the following form:
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W = [(us — Tny) — Es(Au— TAR)| + C|(T — T)) — Tlog% + %E(s — g &s)°
— (T — T())(S — SLéSS)EO(7 (Ag)

where we used Eq. (3) relating the thermo-elastic strain to the total and the inelastic strain and where we
neglect the interaction term.

It is interesting to observe that in general the elastic modulus E, the thermal expansion factor o and the
heat capacity C can be assumed to be function of the internal variable &g, that is,

E = E(&s), o= a(&s), C=C(&) (A9)

However, for simplicity, in the following, they are all assumed to be independent of &g.
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